-
-3x2 + 2x - 5
lim --------------
x->-inf x3 - 1
-3x2 + 2x - 5 -3x2 -3
lim -------------- = lim ------ = lim --- = 0
x->-inf x3 - 1 x->-inf x3 x->-inf x
-
_____ __
\|2 + x - \|2
lim -------------
x->0 x
Indeterminación 0/0
_____ __ _____ __ _____ __
\|2 + x - \|2 \|2 + x - \|2 (\|2 + x + \|2 )
lim ------------- = lim -------------------------------- =
x->0 x x->0 _____ __
x( \|2 + x + \|2 )
2 + x - 2 1 1
lim ------------------ = lim ------------- = -----
x->0 _____ __ x->0 _____ __ __
x(\|2 + x + \|2 ) (\|2 + x + \|2 ) 2\|2
-
x3 - 3x + 2
lim -------------
x->1 x2 + x - 2
Indeterminación 0/0
x3 - 3x + 2 (x - 1)(x - 1)(x - 2)
lim ------------- = lim --------------------- = 0
x->1 x2 + x - 2 x->1 (x - 1)(x + 2)
Ruffini:
| 1 | 0 | -3 | 2 |
1 | | 1 | 1 | -2 |
| 1 | 1 | -2 | 0 |
1 | | 1 | 2 | |
| 1 | 2 | 0 | |
-2 | | -2 | | |
| 1 | 0 | | |
|
|
-
x3 + 4x2
lim -----------
x->0+ x4 - 2x2
Indeterminación 0/0
x3 + 4x2 x2(x + 4) 4
lim ----------- = lim ------------- = --- = -2
x->0+ x4 - 2x2 x->0+ x2(x2 - 2) -2
-
L(x - 1)
lim ---------
x->2 ex-2 - 1
Indeterminado 0/0
equiv. a x - 2
---^---
L(x - 1) x - 2
lim --------- = lim ----- = 1 por límites tipo
x->2 ex-2 - 1 x->2 x - 2 (también se resuelve
---^--- aplicando L'Hôpital)
equiv. a x - 2
-
31/x - 1
lim -----------
x->+inf 51/x - 1
Indeterminación 0/0
equiv. a (1/x)L3
---^---
31/x - 1 (1/x)L3 L3
lim ---------- = lim ------- = ---- = log53
x->+inf 51/x - 1 x->+inf (1/x)L5 L5
---^--- por límites tipo
equiv. a (1/x)L5
-
3sen4x
lim -------
x->0 2x
Indeterminado 0/0
equiv. a 4x
--^--
3sen4x 3.4x
lim ------- = lim ---- = 6 por límites tipo
x->0 2x x->0 2x
-
1 - cos3x
lim ---------
x->0 x2
Indeterminado 0/0
equiv. a (3x)2/2
----^----
1 - cos3x (3x)2 9
lim --------- = lim ------- = --- por límites tipo
x->0 x2 x->0 2x2 2
-
sen3x + tg2x
lim ------------
x->0 x
Indeterminado 0/0
equiv. a 3x equiv. a 2x
--^-- --^--
sen3x + tg2x 3x + 2x 5x
lim ------------ = lim ------- = lim ---- = 5 por límites tipo
x->0 x x->0 x x->0 x
-
lim ((x - 1)/(x + 3))x+2
x->+inf
Indeterminado 1inf
lim (x + 2)((x - 1)/(x + 3) - 1)
lim ((x - 1)/(x + 3))x+2 = e x->+inf =
x->+inf
lim (x + 2)(x - 1 - x - 3)/(x + 3) lim -4(x + 2)/(x + 3)
e x->+inf = e x->+inf =
lim -4x/x -4
e x->+inf = e = 1/e4
-
lim xLx
x->0+
Indeterminado 0.inf
Lx
lim xLx = lim ----- = 0- por órdenes de infinitos
x->0+ x->0+ 1/x
-
ex - e
lim ---------
x->1 x2 - 1
Indeterminación 0/0
ex - e ex e
lim --------- = lim ---- = --- por L'Hôpital
x->1 x2 - 1 x->1 2x 2
También:
equiv. a (x-1)
----^----
ex - e e(ex - 1 - 1) e(x - 1) e
lim --------- = lim -------------- = lim -------------- = ---
x->1 x2 - 1 x->1 x2 - 1 x->1 (x - 1)(x + 1) 2
por límites tipo
-
lim (1 + 2/x)x
x->+inf
Indeterminado 1inf
lim x(2/x) 2
lim (1 + 2/x)x = e x->+inf = e
x->+inf
-
L(Lx)
lim -------
x->e x - e
Indeterminación 0/0
L(Lx) 1 1
lim ------- = lim ------ = --- por L'Hôpital
x->e x - e x->e (Lx)x e
También:
equiv. a Lx - 1 equiv. a x/e - 1
--^-- --^--
L(Lx) Lx - 1 Lx - Le L(x/e)
lim ------- = lim -------- = lim -------- = lim ------- =
x->e x - e x->e x - e x->e x - e | x->e x - e
|
x - e 1 La - Lb = L(a/b)
lim -------- = --- por límites tipo
x->e e(x - e) e
-
x - 1
lim (Lx)
x->1+
Indeterminación 00
(IND. 0.inf)
| L(Lx)
x - 1 lim (x - 1)L(Lx) | lim ---------- 0
lim (Lx) = e x->1+ = e x->1+ 1/(x - 1) = e = 1
x->1+
por órdenes de infinitos
Propiedades útiles de los logaritmos
log(a/b) = log a - log b
log a.b = log a + log b
log(a - b) = log(a/eb)
log ak = klog a
logc a
logb a = ---------
logc b